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Increasing demands for reliable and least-cost high-
performance aerostructures are pressing design analyses,
materials, and manufacturing processes to new and narrowly
experienced performance and verification technologies. This
study assessed the adequacy of current experimental
verification of the traditional binding ultimate safety factor t
which covers rare events in which no statistical design data

exist. Because large high-performance structures are
inherendy.very flexible, bo_u_n_ iTotations and deflections
under externally applied loads approaching f'/aZ_tire may
distort their transmission and unknowingly accept
submarginal structures or prematurely fracturing reliable
ones. A technique was developed, using measured strains
from back-to-back surface mounted gauges, to analyze,
define, and monitor induced moments and plane forces
through progressive material changes from total-elastic to
total-inelastic zones within the structural element cross
section. Deviations from specified test loads are identified by
the consecutively changing ratios of moment-to-axial load.
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Increasing demands for more reliable and mfordable
access to space are promodng leaner and more innovative
structural designs that invoke more reliance on experimental
verification of their behavior and safety . This compelling
shift raises concerns on how well verification tests are

implemented. Assemblies of large, high-performance
aerostructures are inherently very flexible, and structural
boundary rotations and deflections at externally applied loads
approaching rupture may improperly transmit the binding
verification loads and unknowingly reject a perfectly adequate
design or accept a submarginal one.

To sample this phenomenon, the slope and
deflection were calculated at the flee-end boundary, load on a
hypothetical cantilevered beam, Fig. 1. Deflections and
slopes are shown for the yield and ultimate strain limits
calculated at the fixed end. The tangent of the free boundary
slope 0 is a measure of the consecutively applied load
decomposing from bending to bending-axial toad ratio.
Though the vertical scale is exaggerated, the slopes and
displacements at the flee end are proportional.
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= normal load, kips

= moment, kip-inches
= cross sectional limits, inches

= element thickness, inches

= element width, inches
= elastic modulus, ksi

= strain hardening exponent

= strength coefficient, "ksi
= normal stress, ksi
= normal strain

S ubscrip ts

ty = tensile yield
tu = tensile ultimate

cy = compression yield
N = normal

M = bending
1 = minimum measured strain
2 = maximum measured strain
k = zone number
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Fig. 1. Boundary load deformation

The ultimate load to fracture was calculated to be

twice the yield load, and the resulting ultimate strain at the
fixed end was an order-of-magnitude larger than the yield. At
ultimate loading, the predicted deflection was an 18 degree
slope resulting in over 30 percent bending-to-axial load ratio
deviation. The adversity of this ratio to the verification
criteria is dependent on how it feeds into and intensifies
critically stressed regions and how it may change the failure
mode.

Though many codes and texts are available for
predicting inelastic strain responses from imposed inplane
and bending loads, literature is mute on determining test
combined loads from measured inelastic strains. A technique
was developed to analyze elastic-inelastic strains measured
from back-to-back surface mounted -auoeq to determine and

verify transmitted test loads with specified applied loads•

II, Elastic-inelastic materials model

Modeling elastic-inelastic behavior could be veo,

dfft,cuh*- unless idealized into the simplest mathematical



expressionswithinthephysicalphenomenaofthematerial
andits application,suchasthetwo parameterpower
expression,3

(7 =K U' , (1)

where "n" is the strain-hardening exponent. In the linear

elastic region, a_<F_, the exponent is defined as n = 1.0,

and for o"> F_,, the strain-hardening exponent is calculated
from uniaxial stress-strain data

log (F,./ F_)

n = log (s,_/s_) "
(2)

The strength coefficient "K" is evaluated at the yield stress,
which is the elastic-inelastic interface,

F_ F.F(I_.)
K =_qq =--_ •

(3)

These properties are directly applicable to normal stresses
and strains without interpretation through theory.

I11. Structural Modelin_

A rectangular cross section element illustrated in

Fig 2 represents most structural components and regions as
in beams, plates, and shells. Bending and inplane normal

loadings are the most commonly measured components on
this type of element using back-to-back strain gauges. They
often may be sufficient to sample and verify the load
transmission of more complex systems, including transverse
shears.

Surface mounted

strain gauges

Fig. 2. Back-to-back instrumented element

The induced normal stress in Fig. 2,

bending and axial strains are linear, they may be
algebraically added as shown in figure 3(a). These combined
strains are measured back-to-back at the element surfaces as
e2 and el, where e2 is assumed to be greater than el. Fig.

3(b) illustrates the nonlinear bending stress distribuoon
derived from the strain distribution using Eq. (1) and the
shift of the bending axis to balance the moment.
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Fig. 3. Strain and stress distributions along the
element cross section

When E2 < e,_. the combined strain distributions
over the cross section are all in one elastic zone, and when

El > E,y, the distributions are all in one inelastic zone. The

objective is to define the elastic-inelastic zone boundaries for
all other measured strain combinations and to calculate their

contributions to the total normal and bending loads.

The net strain from any midplane y-distance along
the element thickness in figure 3(a) is defined by the

proportionality

e, =T(O.5H +y) +_, (6)

and its location is

y = _ (_- t;l) --0.5 H . (/-._

The bending strain slope is

and strain,

(4)
cry, - wH '

[ m l _
,s^, =LKwH] ' (5)

are uniformly distributed over the element cross section

throughout the elastic and inelastic range. Because cross
section planes are known to remain plane after elastic and
inelastic bending, the inelastic bending strain also varies
linearly along the thickness. However, the stress varies
nonlinearly with Eq. (1) and the bending neutral axis is not
expected to coincide with the cross section centroid. Since

(8)
7 - H

The incremental normal load along the cross

section thickness is the product of the induced stress and

area,

cL_: = w _, dy = wK(Sy)"dy.

Substituting Eq. (6) for the strain and inte_ating, all zone
nommI loads may be calculated from



wKy"[H el ].+l]c° (9)
N_- n+l -2-+-Y +y Jc_

where Ca and Cb are the integration limits of a zone. A

zone is bound along the y-axis by the surface measured

strains, el and e2. or by the material limit changes noted by

e,y and ecr Substituting the appropriate pair of boundary
strains into Eq. (7),

(I0)

provides the upper and lower integration limits of each zone.
The yield strain may be tension or compression, where ecy

= - _:ty is assumed for a symmetrical material. The normal
load across the thickness is: the sum oral-the zone normal
loads

N = ._'N k • (1l)

Bending strain along the thickness is given by e.vry

= ¢y - ON, and the neutral bending axis is defined by a zero

bending strain (eMy = 0), from which ey = eN.

Substituting into Eq. (7), the neutral bending axis is

1
CM = _ (S,,1 - _:1) - 0.5 H . (12)

where the normal strain, eN, across the thickness is

determined by substituting Eq. (11) into Eq. (5). Using Eq.
(12), the incremental moment about the neutral axis is

dM = wcr,(y- CM) dy = wK(z:,)"(y - CM) dy .
(13)

Substituting Eq.s (6) and (12) into Eq. (13) and integrating,
a zone moment about the neutral axis is calculated from

Mk =wKy +7 + y

+T'-Y --+T
X _ -

n +2 n +1 "

(14)

The moment about the cross section is the sum of all the

zone moments,

M = ZM . (15)

A unit width, w = 1, is assumed for plates and shells from

which normal loads and bending moments are defined by'

kips per inch and kip-inch per inch units, respectively.
Using the strain distribution expression of Eq. (6), the stress
distribution along each zone is given by

cy, = K [ABS (s,)]"SGN (g,). (16)

Expressions in absolute form allow raising strains to odd
powers. SGN ( ) is the signum function, which re-

establishes the sign of the expression. If the function equals
-1, the strain is negative.

IV, Normal Load and Moment Solutions
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Fig. 4. Strain profiles over element cross
section

The induced combined normal and bending moment

loads in each strain profile are resolved through a
straightforward analytical routine summarized as follows:

• Using azone boundaries strains from selected Fig

a profile, the integration limits C,,e for each zone are
defined from Eq. (10), and are substituted into Eq. (9) to
solve for the normal load NLk of each zone in the

profile,



• Thesumof normalloadsfromall zones,Eq.
(11),is substitutedintoEq.(5) toobtaintheprofile
normal strain.

• The bending neutral axis Cu is located using the

total normal strain from Eq. (5) in Eq. (12)

• Equation (14) determines the bending moment
MI._ in each zone about the neutral bending axis, which
are summed in Eq. (15) to provide the desired profile
moment.

• Strain distribution _ and stress distribution cry

are plotted over the thickness using Eqs. (6) and (16),
respectively.

This direct, though laborious, routine was reduced

to a simple computer code requiring no detailed knowledge
of its derivation.

V. Normal-bendin_ loads 0to,ram

Profile (III), having the most zones, was solved and
programmed as summarized above. Other profiles, having
fewer zones, were adapted by resetting limits according to
their zone boundary values and positions in the strain

diagrams and applying them to their appropriate zones.

2qORMAL/BENDING LOADS FROM STRAIN DATA
'NMLFSD, Microsoft Quick Basic

' MATERIAL PROPERTIES
INPUT "ELASTIC MODULUS E=";ELM

INPUT "YIELD STRESS Fty=";FTY
INPUT "MAX STRESS Ftu=";FTU
INPUT "STRAIN @ MAX STRESS Etu=";ETU

ETY=FTY/ELM
PRINT "TENSION YIELD STRAIN";ETY
ECY=-ETY

S HE=LOG (FTU/FTY)/LOG 0ETU/ETY)
PRINT "STRAIN HARDENING EXPO. n=";SHE

K=FTY/(ETY^SHE)
PRINT "STRENGTH COEF K=";K
K0=K
SHE0=SHE
ECY0=ECY
ETY0=ETY

'TEST DATA
INPUT "ELEMENT THICKNESS H=";H
INPUT "ELEMENT WIDTH w=";W

10 INPUT "TEST MAX STRAIN E2=":E2

INPUT "TEST MIN STRAIN El =";El
IF E2<Ei THEN
PRINT "MAX STRAIN < MIN STRAIN"
GOTO l 0
END IF
IF E2=E1 THEN E1=0.975

SLOP=(E2-E1)/H

PRO=3

ZISING PROFILE (III) (EI<ECY<ETY<E2)
IF ECY<E1 AND EI<ETY AND ETY<E2 THEN
ECY=E 1:PRO=2
ELSEIF ETY<E1 AND El<E2 THEN
ECY=E 1:ETY=E 1:PRO----4
ELSEIF E2<ETY AND ECY<E1 THEN
K=ELM :SHE=I :ECY=EI:ETY=E2:PRO=I
END IF

NRI 1=W* K*(E2^(SHE+ 1)-

ETY ^(SHE+I))/(SLOP'(SHE+I))
NE12=W*ELM* ((ETY^2)arECY^2))/(2*SLOP)
NIII3=(AB S(ECY))^(SHE+ 1)-(AB S0E 1))"(S HE+ 1)
NLII3=NIII3*W*K/(SLOP*(SHE+ 1))
N'/IIT=NIII 1+NIII2+NIII3
PRINT "TOTAL AXIAL LOAD N=";NIIIT
SNIII=NqlITt%V/H
PRINT "AXIAL LOAD STRESS SN=";SNIII

IF SNIII<FTY THEN
ENIII=SNIII/ELM
ELSE

F_NTII=(SNIII./K)^(1/S HE)
END IF
PRINT "AXIAL LOAD STRAIN EN=";ENIII

EMMIII=E2-ENIII
PRINT "MAX BENDING STRAIN EM=";EMMIII

CMIII= 0ENIII-E 1)/SLOP-I-I/2
PRINT "BENDING NEUTRAL AXIS CM=";CMIII

NLIII1=-((E2^(S HE+ 1))-0ETY^(S HE_- 1)))/(S HE+ 1)
MIIII=MIII1 * ((E 1+E2)/2+CMIII* SLOP)
M/II 1=MIII 1+((E2^(S HE+2)) -(ETY",(S HE+2)))/(SHE+2)
MIII 1=MIII 1" W'K/(SLOP^2)
MIII2=-((ETY^2)-(E 1^2))*((E I +E2)/2+CMIII" SLOP)/2
MIII2=MIII2+((ETY^3)-(E 1̂ 3))/3
MIII2=MIII2* W*ELM/(SLOP^2)

_mI3=-((ABS(ECY))^(SHE+I)-
(ABSfE1))^(SHE+I))/(SHE+I)
MIII3=MIII3*((El+E2)/2+CMIII"SLOP)
MIII3=MIII3+((ABS (ECY))"(SHE+2)-
(AB S(E 1))^( SHE +2))/(S HE+ 2)
MIII3=MIII3*W*K/(SLOP^2)
MIIIT=MIII 1+MIII2+MIII3
PRINT "BENDING MOMENT M=";MIIIT

RIII=IVlIIIT/NIIIT
PRINT"MOMENT/AXIAL LOAD RATIO R=";RIII

LIMITS

CTY=(ETY-E1)/SLOP-H_
CCY=(ECY-E1)/SLOP-I-_-
ETYA=FTY/ELM

'STRESS & STRAIN DISTRIBUTIONS
OPEN "CLIP:" FOR OUTPL_ AS #2

PRINT "PROFILE=" ;PRO

4



IFPRO=3THEN
YS=-.5*H: YF=CCY: MY=9
M=MY-1

DY=(YF-YS)/M
EY3=0: SY3=O

y=YS
FOR I=l TO M

EY3=(.5*H+y)*SLOP+E1
SY3=K" ((ABS(EY3)^SHE)) *SGN(EY3)
WRITE #2,y,EY3,ENIII,ETYA,S Y3,SNIII,FTY
PRINT y,EY3,ENIII,ETYA,S Y3,SNIII,FTY

y=YS+(I+I)*DY
NEXT I
END IF

IF PRO= 1 OR PRO=2 OR PRO=3 THEN
YS=CCY: YF=CTY: MY=9
IF E2<ETY THEN YF=.5*H

M=MY-1
DY=(YF-YS)/M
EY2=0: SY2=O

y=YS
FOR I= 1 TO M

EY2=(.5*H+y)*SLOP+E1
SY2.=ELM*EY2
WRITE #2,y,EY2,ENIII,ETYA,S Y2,SNIII,FTY

PRINT y,.E y 2,ENIII,ETY A,S Y2,S NIII,FTY
y=YS+(I+I)*DY
NEXT I
END IF

IF PRO=2 OR PRO=3 OR PRO--a Tt-IEN
YS=CTY: YF=.5*H: MY=I 1
M=MY-1

DY=(YF-YS)/M
EPI=0:SPI=0

y=YS
FOR I=l TO M

EPI=(.5*H+y)*SLOP+E 1
SP1 =K* ((AB S(EP 1)^S HIE))* SGNCEP1)

WRITE #2,y.EP1,ENIII,ETY A,SP 1,SNIII,FTY
PRINT y,EP1 ,ENIIIjETYA,SP1,SNIII,FTY
y=YS+(I_-I)*DY
NEXT I
END IF

CLOSE #2
REM STOP
CLS
ETY=ETY0
ECY=ECY0
K=K0
SHE=SHE0
GOTO 10

A sample printout of the program giving cross
section characteristics derived from back-to-back strain gauge
data is

ELASTIC MODULUS E=? 10500

YIELD STRESS Fry =? 38
MAX STRESS Ftu =? 58

STRAIN @ MAX STRESS Eyu =? .06
TENSION YIELD STRAIN 3.619048E - 03
STRAIN HARDENING EXPO. n = .1505829
STRENGTH COEF K= 88.59669
ELEMENT THICKNESS H =? 1.4
ELEMENT WIDTH w =? .74
TEST MAX STRAIN E2 =? .02
TEST MIN STRAIN El=? -.01
TOTAL AXIAL LOAD N= 16.21604
AXIM.. LOAD STRESS SN= 15.65255
AXIAL LOAD STRAIN EN= 1.490719E-03
MAX BENDING STRAIN EM= 1.850928E-02
BENDING NrEUTRAL AXIS CM= -.1637665
BENDING MOMENT M= 17.29161
MOMENT / AXIAL LOAD RATIO R= 1.066328

VI, Conclusions

Experimental verification consists of two Coherent,
deterministic static test parts. Structural response within the
elastic limit is verified with specified external loads
representing maximum predicted operational environments.
The ultimate factor of safety covers rare events, and its
7aditional and historical usage exerts the greatest influence

on desi_ and acceptance criteria.

However, the order-of-ma_maitude larger strains, and

therefore displacements, imposed by the ultimate factor of
safety may distort the applied load transmission. The
documented technique was developed to identify and assess
verification load transfer discrepancy through back-to-back
surface mounted strain gauge data, which is applicable

throughout the elastic and inelastic range of the structural
material.

It is concerning that verification test results often

report surface strain measurements to conform very well
with predicted math models up to the yield point, but then
unexpectedly deviate during the inelastic loading to
premature fracture. Reasons offered are usually indefinite.
Perhaps this suggested technique may' extend the basis for a
morn definite test evaluauon.
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